AWS Machine Learning Blog
Tag: Generative AI
Implement semantic video search using open source large vision models on Amazon SageMaker and Amazon OpenSearch Serverless
In this post, we demonstrate how to use large vision models (LVMs) for semantic video search using natural language and image queries. We introduce some use case-specific methods, such as temporal frame smoothing and clustering, to enhance the video search performance. Furthermore, we demonstrate the end-to-end functionality of this approach by using both asynchronous and real-time hosting options on Amazon SageMaker AI to perform video, image, and text processing using publicly available LVMs on the Hugging Face Model Hub. Finally, we use Amazon OpenSearch Serverless with its vector engine for low-latency semantic video search.
Build a scalable AI assistant to help refugees using AWS
The Danish humanitarian organization Bevar Ukraine has developed a comprehensive virtual generative AI-powered assistant called Victor, aimed at addressing the pressing needs of Ukrainian refugees integrating into Danish society. This post details our technical implementation using AWS services to create a scalable, multilingual AI assistant system that provides automated assistance while maintaining data security and GDPR compliance.
Enhanced diagnostics flow with LLM and Amazon Bedrock agent integration
In this post, we explore how Noodoe uses AI and Amazon Bedrock to optimize EV charging operations. By integrating LLMs, Noodoe enhances station diagnostics, enables dynamic pricing, and delivers multilingual support. These innovations reduce downtime, maximize efficiency, and improve sustainability. Read on to discover how AI is transforming EV charging management.
Fast-track SOP processing using Amazon Bedrock
When a regulatory body like the US Food and Drug Administration (FDA) introduces changes to regulations, organizations are required to evaluate the changes against their internal SOPs. When necessary, they must update their SOPs to align with the regulation changes and maintain compliance. In this post, we show different approaches using Amazon Bedrock to identify relationships between regulation changes and SOPs.
Architect a mature generative AI foundation on AWS
In this post, we give an overview of a well-established generative AI foundation, dive into its components, and present an end-to-end perspective. We look at different operating models and explore how such a foundation can operate within those boundaries. Lastly, we present a maturity model that helps enterprises assess their evolution path.
A generative AI prototype with Amazon Bedrock transforms life sciences and the genome analysis process
This post explores deploying a text-to-SQL pipeline using generative AI models and Amazon Bedrock to ask natural language questions to a genomics database. We demonstrate how to implement an AI assistant web interface with AWS Amplify and explain the prompt engineering strategies adopted to generate the SQL queries. Finally, we present instructions to deploy the service in your own AWS account.
Secure distributed logging in scalable multi-account deployments using Amazon Bedrock and LangChain
In this post, we present a solution for securing distributed logging multi-account deployments using Amazon Bedrock and LangChain.
Build a domain‐aware data preprocessing pipeline: A multi‐agent collaboration approach
In this post, we introduce a multi-agent collaboration pipeline for processing unstructured insurance data using Amazon Bedrock, featuring specialized agents for classification, conversion, and metadata extraction. We demonstrate how this domain-aware approach transforms diverse data formats like claims documents, videos, and audio files into metadata-rich outputs that enable fraud detection, customer 360-degree views, and advanced analytics.
Automating complex document processing: How Onity Group built an intelligent solution using Amazon Bedrock
In this post, we explore how Onity Group, a financial services company specializing in mortgage servicing and origination, transformed their document processing capabilities using Amazon Bedrock and other AWS services. The solution helped Onity achieve a 50% reduction in document extraction costs while improving overall accuracy by 20% compared to their previous OCR and AI/ML solution.
Cost-effective AI image generation with PixArt-Sigma inference on AWS Trainium and AWS Inferentia
This post is the first in a series where we will run multiple diffusion transformers on Trainium and Inferentia-powered instances. In this post, we show how you can deploy PixArt-Sigma to Trainium and Inferentia-powered instances.