AWS Machine Learning Blog
Category: Intermediate (200)
Capture public health insights more quickly with no-code machine learning using Amazon SageMaker Canvas
Public health organizations have a wealth of data about different types of diseases, health trends, and risk factors. Their staff has long used statistical models and regression analyses to make important decisions such as targeting populations with the highest risk factors for a disease with therapeutics, or forecasting the progression of concerning outbreaks. When public […]
How Light & Wonder built a predictive maintenance solution for gaming machines on AWS
This post is co-written with Aruna Abeyakoon and Denisse Colin from Light and Wonder (L&W). Headquartered in Las Vegas, Light & Wonder, Inc. is the leading cross-platform global game company that provides gambling products and services. Working with AWS, Light & Wonder recently developed an industry-first secure solution, Light & Wonder Connect (LnW Connect), to […]
Fast-track graph ML with GraphStorm: A new way to solve problems on enterprise-scale graphs
We are excited to announce the open-source release of GraphStorm 0.1, a low-code enterprise graph machine learning (ML) framework to build, train, and deploy graph ML solutions on complex enterprise-scale graphs in days instead of months. With GraphStorm, you can build solutions that directly take into account the structure of relationships or interactions between billions […]
Retrain ML models and automate batch predictions in Amazon SageMaker Canvas using updated datasets
You can now retrain machine learning (ML) models and automate batch prediction workflows with updated datasets in Amazon SageMaker Canvas, thereby making it easier to constantly learn and improve the model performance and drive efficiency. An ML model’s effectiveness depends on the quality and relevance of the data it’s trained on. As time progresses, the […]
Technology Innovation Institute trains the state-of-the-art Falcon LLM 40B foundation model on Amazon SageMaker
This blog post is co-written with Dr. Ebtesam Almazrouei, Executive Director–Acting Chief AI Researcher of the AI-Cross Center Unit and Project Lead for LLM Projects at TII. United Arab Emirate’s (UAE) Technology Innovation Institute (TII), the applied research pillar of Abu Dhabi’s Advanced Technology Research Council, has launched Falcon LLM, a foundational large language model […]
Build high-performance ML models using PyTorch 2.0 on AWS – Part 1
PyTorch is a machine learning (ML) framework that is widely used by AWS customers for a variety of applications, such as computer vision, natural language processing, content creation, and more. With the recent PyTorch 2.0 release, AWS customers can now do same things as they could with PyTorch 1.x but faster and at scale with […]
Translate documents in real time with Amazon Translate
A critical component of business success is the ability to connect with customers. Businesses today want to connect with their customers by offering their content across multiple languages in real time. For most customers, the content creation process is disconnected from the localization effort of translating content into multiple target languages. These disconnected processes delay […]
Automate document validation and fraud detection in the mortgage underwriting process using AWS AI services: Part 1
In this three-part series, we present a solution that demonstrates how you can automate detecting document tampering and fraud at scale using AWS AI and machine learning (ML) services for a mortgage underwriting use case. This solution rides on a more significant global wave of increasing mortgage fraud, which is worsening as more people present […]
Index your Confluence content using the new Confluence connector V2 for Amazon Kendra
Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should […]
Announcing the updated Microsoft SharePoint connector (V2.0) for Amazon Kendra
Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. Amazon Kendra can pull together […]