AWS Machine Learning Blog
Category: Financial Services
Part 3: Building an AI-powered assistant for investment research with multi-agent collaboration in Amazon Bedrock and Amazon Bedrock Data Automation
In this post, we walk through how to build a multi-agent investment research assistant using the multi-agent collaboration capability of Amazon Bedrock. Our solution demonstrates how a team of specialized AI agents can work together to analyze financial news, evaluate stock performance, optimize portfolio allocations, and deliver comprehensive investment insights—all orchestrated through a unified, natural language interface.
How Lumi streamlines loan approvals with Amazon SageMaker AI
Lumi is a leading Australian fintech lender empowering small businesses with fast, flexible, and transparent funding solutions. They use real-time data and machine learning (ML) to offer customized loans that fuel sustainable growth and solve the challenges of accessing capital. This post explores how Lumi uses Amazon SageMaker AI to meet this goal, enhance their transaction processing and classification capabilities, and ultimately grow their business by providing faster processing of loan applications, more accurate credit decisions, and improved customer experience.
Transforming financial analysis with CreditAI on Amazon Bedrock: Octus’s journey with AWS
In this post, we demonstrate how Octus migrated its flagship product, CreditAI, to Amazon Bedrock, transforming how investment professionals access and analyze credit intelligence. We walk through the journey Octus took from managing multiple cloud providers and costly GPU instances to implementing a streamlined, cost-effective solution using AWS services including Amazon Bedrock, AWS Fargate, and Amazon OpenSearch Service.
How Rocket Companies modernized their data science solution on AWS
In this post, we share how we modernized Rocket Companies’ data science solution on AWS to increase the speed to delivery from eight weeks to under one hour, improve operational stability and support by reducing incident tickets by over 99% in 18 months, power 10 million automated data science and AI decisions made daily, and provide a seamless data science development experience.
Transforming credit decisions using generative AI with Rich Data Co and AWS
The mission of Rich Data Co (RDC) is to broaden access to sustainable credit globally. Its software-as-a-service (SaaS) solution empowers leading banks and lenders with deep customer insights and AI-driven decision-making capabilities. In this post, we discuss how RDC uses generative AI on Amazon Bedrock to build these assistants and accelerate its overall mission of democratizing access to sustainable credit.
How Travelers Insurance classified emails with Amazon Bedrock and prompt engineering
In this post, we discuss how FMs can reliably automate the classification of insurance service emails through prompt engineering. When formulating the problem as a classification task, an FM can perform well enough for production environments, while maintaining extensibility into other tasks and getting up and running quickly. All experiments were conducted using Anthropic’s Claude models on Amazon Bedrock.
London Stock Exchange Group uses Amazon Q Business to enhance post-trade client services
In this blog post, we explore a client services agent assistant application developed by the London Stock Exchange Group (LSEG) using Amazon Q Business. We will discuss how Amazon Q Business saved time in generating answers, including summarizing documents, retrieving answers to complex Member enquiries, and combining information from different data sources (while providing in-text citations to the data sources used for each answer).
How Clearwater Analytics is revolutionizing investment management with generative AI and Amazon SageMaker JumpStart
In this post, we explore Clearwater Analytics’ foray into generative AI, how they’ve architected their solution with Amazon SageMaker, and dive deep into how Clearwater Analytics is using LLMs to take advantage of more than 18 years of experience within the investment management domain while optimizing model cost and performance.
Create a virtual stock technical analyst using Amazon Bedrock Agents
n this post, we create a virtual analyst that can answer natural language queries of stocks matching certain technical indicator criteria using Amazon Bedrock Agents.
Accelerate your financial statement analysis with Amazon Bedrock and generative AI
In this post, we demonstrate how to deploy a generative AI application that can accelerate your financial statement analysis on AWS.