AWS Machine Learning Blog
Category: AWS Lambda
A generative AI prototype with Amazon Bedrock transforms life sciences and the genome analysis process
This post explores deploying a text-to-SQL pipeline using generative AI models and Amazon Bedrock to ask natural language questions to a genomics database. We demonstrate how to implement an AI assistant web interface with AWS Amplify and explain the prompt engineering strategies adopted to generate the SQL queries. Finally, we present instructions to deploy the service in your own AWS account.
Integrate Amazon Bedrock Agents with Slack
In this post, we present a solution to incorporate Amazon Bedrock Agents in your Slack workspace. We guide you through configuring a Slack workspace, deploying integration components in Amazon Web Services, and using this solution.
WordFinder app: Harnessing generative AI on AWS for aphasia communication
In this post, we showcase how Dr. Kori Ramajoo, Dr. Sonia Brownsett, Prof. David Copland, from QARC, and Scott Harding, a person living with aphasia, used AWS services to develop WordFinder, a mobile, cloud-based solution that helps individuals with aphasia increase their independence through the use of AWS generative AI technology.
Build a FinOps agent using Amazon Bedrock with multi-agent capability and Amazon Nova as the foundation model
In this post, we use the multi-agent feature of Amazon Bedrock to demonstrate a powerful and innovative approach to AWS cost management. By using the advanced capabilities of Amazon Nova FMs, we’ve developed a solution that showcases how AI-driven agents can revolutionize the way organizations analyze, optimize, and manage their AWS costs.
Build a computer vision-based asset inventory application with low or no training
In this post, we present a solution using generative AI and large language models (LLMs) to alleviate the time-consuming and labor-intensive tasks required to build a computer vision application, enabling you to immediately start taking pictures of your asset labels and extract the necessary information to update the inventory using AWS services
Streamline AWS resource troubleshooting with Amazon Bedrock Agents and AWS Support Automation Workflows
AWS provides a powerful tool called AWS Support Automation Workflows, which is a collection of curated AWS Systems Manager self-service automation runbooks. These runbooks are created by AWS Support Engineering with best practices learned from solving customer issues. They enable AWS customers to troubleshoot, diagnose, and remediate common issues with their AWS resources. In this post, we explore how to use the power of Amazon Bedrock Agents and AWS Support Automation Workflows to create an intelligent agent capable of troubleshooting issues with AWS resources.
Integrate generative AI capabilities into Microsoft Office using Amazon Bedrock
In this blog post, we showcase a powerful solution that seamlessly integrates AWS generative AI capabilities in the form of large language models (LLMs) based on Amazon Bedrock into the Office experience. By harnessing the latest advancements in generative AI, we empower employees to unlock new levels of efficiency and creativity within the tools they already use every day.
How Rocket Companies modernized their data science solution on AWS
In this post, we share how we modernized Rocket Companies’ data science solution on AWS to increase the speed to delivery from eight weeks to under one hour, improve operational stability and support by reducing incident tickets by over 99% in 18 months, power 10 million automated data science and AI decisions made daily, and provide a seamless data science development experience.
Building a virtual meteorologist using Amazon Bedrock Agents
In this post, we present a streamlined approach to deploying an AI-powered agent by combining Amazon Bedrock Agents and a foundation model (FM). We guide you through the process of configuring the agent and implementing the specific logic required for the virtual meteorologist to provide accurate weather-related responses.
Amazon Q Business simplifies integration of enterprise knowledge bases at scale
In this post, we demonstrate how to build a knowledge base solution by integrating enterprise data with Amazon Q Business using Amazon S3. This approach helps organizations improve operational efficiency, reduce response times, and gain valuable insights from their historical data. The solution uses AWS security best practices to promote data protection while enabling teams to create a comprehensive knowledge base from various data sources.