AWS Machine Learning Blog
Category: Amazon SageMaker
Model customization, RAG, or both: A case study with Amazon Nova
The introduction of Amazon Nova models represent a significant advancement in the field of AI, offering new opportunities for large language model (LLM) optimization. In this post, we demonstrate how to effectively perform model customization and RAG with Amazon Nova models as a baseline. We conducted a comprehensive comparison study between model customization and RAG using the latest Amazon Nova models, and share these valuable insights.
Llama 4 family of models from Meta are now available in SageMaker JumpStart
Today, we’re excited to announce the availability of Llama 4 Scout and Maverick models in Amazon SageMaker JumpStart. In this blog post, we walk you through how to deploy and prompt a Llama-4-Scout-17B-16E-Instruct model using SageMaker JumpStart.
Advanced tracing and evaluation of generative AI agents using LangChain and Amazon SageMaker AI MLFlow
In this post, I show you how to combine LangChain’s LangGraph, Amazon SageMaker AI, and MLflow to demonstrate a powerful workflow for developing, evaluating, and deploying sophisticated generative AI agents. This integration provides the tools needed to gain deep insights into the generative AI agent’s performance, iterate quickly, and maintain version control throughout the development process.
Fine-tune large language models with reinforcement learning from human or AI feedback
In this post, we introduce a state-of-the-art method to fine-tune LLMs by reinforcement learning, reviewed the pros and cons of RLHF vs. RLAIF vs. DPO, and saw how to scale LLM fine-tuning efforts with RLAIF. We also see how to implement an end-to-end RLAIF pipeline on SageMaker using the Hugging Face Transformer and TRL libraries, and using either off-the-shelf toxicity reward models to align responses during PPO or by directly prompting an LLM to generate quantitative reward feedback during PPO.
How Lumi streamlines loan approvals with Amazon SageMaker AI
Lumi is a leading Australian fintech lender empowering small businesses with fast, flexible, and transparent funding solutions. They use real-time data and machine learning (ML) to offer customized loans that fuel sustainable growth and solve the challenges of accessing capital. This post explores how Lumi uses Amazon SageMaker AI to meet this goal, enhance their transaction processing and classification capabilities, and ultimately grow their business by providing faster processing of loan applications, more accurate credit decisions, and improved customer experience.
Ray jobs on Amazon SageMaker HyperPod: scalable and resilient distributed AI
Ray is an open source framework that makes it straightforward to create, deploy, and optimize distributed Python jobs. In this post, we demonstrate the steps involved in running Ray jobs on SageMaker HyperPod.
Generate compliant content with Amazon Bedrock and ConstitutionalChain
In this post, we explore practical strategies for using Constitutional AI to produce compliant content efficiently and effectively using Amazon Bedrock and LangGraph to build ConstitutionalChain for rapid content creation in highly regulated industries like finance and healthcare
Integrating custom dependencies in Amazon SageMaker Canvas workflows
When implementing machine learning workflows in Amazon SageMaker Canvas, organizations might need to consider external dependencies required for their specific use cases. Although SageMaker Canvas provides powerful no-code and low-code capabilities for rapid experimentation, some projects might require specialized dependencies and libraries that aren’t included by default in SageMaker Canvas. This post provides an example of how to incorporate code that relies on external dependencies into your SageMaker Canvas workflows.
Amazon SageMaker JumpStart adds fine-tuning support for models in a private model hub
Today, we are announcing an enhanced private hub feature with several new capabilities that give organizations greater control over their ML assets. These enhancements include the ability to fine-tune SageMaker JumpStart models directly within the private hub, support for adding and managing custom-trained models, deep linking capabilities for associated notebooks, and improved model version management.
Enhance deployment guardrails with inference component rolling updates for Amazon SageMaker AI inference
In this post, we discuss the challenges faced by organizations when updating models in production. Then we deep dive into the new rolling update feature for inference components and provide practical examples using DeepSeek distilled models to demonstrate this feature. Finally, we explore how to set up rolling updates in different scenarios.