AWS Machine Learning Blog

Category: Generative AI

Build ultra-low latency multimodal generative AI applications using sticky session routing in Amazon

Build ultra-low latency multimodal generative AI applications using sticky session routing in Amazon SageMaker

In this post, we explained how the new sticky routing feature in Amazon SageMaker allows you to achieve ultra-low latency and enhance your end-user experience when serving multi-modal models.

Build a RAG-based QnA application using Llama3 models from SageMaker JumpStart

In this post, we provide a step-by-step guide for creating an enterprise ready RAG application such as a question answering bot. We use the Llama3-8B FM for text generation and the BGE Large EN v1.5 text embedding model for generating embeddings from Amazon SageMaker JumpStart.

Best prompting practices for using Meta Llama 3 with Amazon SageMaker JumpStart

In this post, we dive into the best practices and techniques for prompting Meta Llama 3 using Amazon SageMaker JumpStart to generate high-quality, relevant outputs. We discuss how to use system prompts and few-shot examples, and how to optimize inference parameters, so you can get the most out of Meta Llama 3.

How healthcare payers and plans can empower members with generative AI

How healthcare payers and plans can empower members with generative AI

In this post, we discuss how generative artificial intelligence (AI) can help health insurance plan members get the information they need. The solution presented in this post not only enhances the member experience by providing a more intuitive and user-friendly interface, but also has the potential to reduce call volumes and operational costs for healthcare payers and plans.

Generative AI-powered technology operations

Generative AI-powered technology operations

In this post we describe how AWS generative AI solutions (including Amazon Bedrock, Amazon Q Developer, and Amazon Q Business) can further enhance TechOps productivity, reduce time to resolve issues, enhance customer experience, standardize operating procedures, and augment knowledge bases.

Align Meta Llama 3 to human preferences with DPO, Amazon SageMaker Studio, and Amazon SageMaker Ground Truth

Align Meta Llama 3 to human preferences with DPO, Amazon SageMaker Studio, and Amazon SageMaker Ground Truth

In this post, we show you how to enhance the performance of Meta Llama 3 8B Instruct by fine-tuning it using direct preference optimization (DPO) on data collected with SageMaker Ground Truth.

Ground truth curation and metric interpretation best practices for evaluating generative AI question answering using FMEval

Ground truth curation and metric interpretation best practices for evaluating generative AI question answering using FMEval

In this post, we discuss best practices for working with Foundation Model Evaluations Library (FMEval) in ground truth curation and metric interpretation for evaluating question answering applications for factual knowledge and quality.