AWS Big Data Blog

Category: Serverless

Automate Amazon Redshift Serverless data warehouse management using AWS CloudFormation and the AWS CLI

Amazon Redshift Serverless makes it simple to run and scale analytics without having to manage the instance type, instance size, lifecycle management, pausing, resuming, and so on. It automatically provisions and intelligently scales data warehouse compute capacity to deliver fast performance for even the most demanding and unpredictable workloads, and you pay only for what […]

Ingest VPC flow logs into Splunk using Amazon Kinesis Data Firehose

February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. December 2023: This post was reviewed and updated to remove the dependency on the AWS Lambda function according to the latest version in Splunk AWS Add-on (7.3.0). In September 2017, during the […]

Introducing runtime roles for Amazon EMR steps: Use IAM roles and AWS Lake Formation for access control with Amazon EMR

You can use the Amazon EMR Steps API to submit Apache Hive, Apache Spark, and others types of applications to an EMR cluster. You can invoke the Steps API using Apache Airflow, AWS Steps Functions, the AWS Command Line Interface (AWS CLI), all the AWS SDKs, and the AWS Management Console. Jobs submitted with the […]

Get started with Apache Hudi using AWS Glue by implementing key design concepts – Part 1

Many organizations build data lakes on Amazon Simple Storage Service (Amazon S3) using a modern architecture for a scalable and cost-effective solution. Open-source storage formats like Parquet and Avro are commonly used, and data is stored in these formats as immutable files. As the data lake is expanded to additional use cases, there are still […]

Build incremental crawls of data lakes with existing Glue catalog tables

AWS Glue includes crawlers, a capability that make discovering datasets simpler by scanning data in Amazon Simple Storage Service (Amazon S3) and relational databases, extracting their schema, and automatically populating the AWS Glue Data Catalog, which keeps the metadata current. This reduces the time to insight by making newly ingested data quickly available for analysis […]

Code versioning using AWS Glue Studio and GitHub

AWS Glue now offers integration with Git, an open-source version control system widely used across the developer community. Thanks to this integration, you can incorporate your existing DevOps practices on AWS Glue jobs. AWS Glue is a serverless data integration service that helps you create jobs based on Apache Spark or Python to perform extract, […]

Land data from databases to a data lake at scale using AWS Glue blueprints

To build a data lake on AWS, a common data ingestion pattern is to use AWS Glue jobs to perform extract, transform, and load (ETL) data from relational databases to Amazon Simple Storage Service (Amazon S3). A project often involves extracting hundreds of tables from source databases to the data lake raw layer. And for […]

Ingest streaming data to Apache Hudi tables using AWS Glue and Apache Hudi DeltaStreamer

In today’s world with technology modernization, the need for near-real-time streaming use cases has increased exponentially. Many customers are continuously consuming data from different sources, including databases, applications, IoT devices, and sensors. Organizations may need to ingest that streaming data into data lakes built on Amazon Simple Storage Service (Amazon S3). You may also need […]

Build, Test and Deploy ETL solutions using AWS Glue and AWS CDK based CI/CD pipelines

April 2025: After careful consideration, we have made the decision to close new customer access to AWS CodeCommit, effective July 25, 2024. AWS CodeCommit existing customers can continue to use the service as normal. AWS continues to invest in security, availability, and performance improvements for AWS CodeCommit, but we do not plan to introduce new […]

Automate ETL jobs between Amazon RDS for SQL Server and Azure Managed SQL using AWS Glue Studio

Nowadays many customers are following a multi-cloud strategy. They might choose to use various cloud-managed services, such as Amazon Relational Database Service (Amazon RDS) for SQL Server and Azure SQL Managed Instances, to perform data analytics tasks, but still use traditional extract, transform, and load (ETL) tools to integrate and process the data. However, traditional ETL tools may […]