AWS Big Data Blog

Category: Database

Create a secure data lake by masking, encrypting data, and enabling fine-grained access with AWS Lake Formation

You can build data lakes with millions of objects on Amazon Simple Storage Service (Amazon S3) and use AWS native analytics and machine learning (ML) services to process, analyze, and extract business insights. You can use a combination of our purpose-built databases and analytics services like Amazon EMR, Amazon OpenSearch Service, and Amazon Redshift as […]

Automate Amazon ES synonym file updates

September 8, 2021: Amazon Elasticsearch Service has been renamed to Amazon OpenSearch Service. See details. Search engines provide the means to retrieve relevant content from a collection of content. However, this can be challenging if certain exact words aren’t entered. You need to find the right item from a catalog of products, or the correct […]

Work with semistructured data using Amazon Redshift SUPER

With the new SUPER data type and the PartiQL language, Amazon Redshift expands data warehouse capabilities to natively ingest, store, transform, and analyze semi-structured data. Semi-structured data (such as weblogs and sensor data) fall under the category of data that doesn’t conform to a rigid schema expected in relational databases. It often contain complex values […]

Streaming Amazon DynamoDB data into a centralized data lake

February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. August 30, 2023: Amazon Kinesis Data Analytics has been renamed to Amazon Managed Service for Apache Flink. Read the announcement in the AWS News Blog and learn more. For organizations moving towards […]

Build seamless data streaming pipelines with Amazon Kinesis Data Streams and Amazon Data Firehose for Amazon DynamoDB tables

February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. August 30, 2023: Amazon Kinesis Data Analytics has been renamed to Amazon Managed Service for Apache Flink. Read the announcement in the AWS News Blog and learn more. The global wearables market […]

Build a data lake using Amazon Kinesis Data Streams for Amazon DynamoDB and Apache Hudi

August 30, 2023: Amazon Kinesis Data Analytics has been renamed to Amazon Managed Service for Apache Flink. Read the announcement in the AWS News Blog and learn more. July 2023: This post was reviewed for accuracy. Amazon DynamoDB helps you capture high-velocity data such as clickstream data to form customized user profiles and online order […]

The following diagram illustrates the architecture of these multi-tenant storage strategies.

Implementing multi-tenant patterns in Amazon Redshift using data sharing

Software service providers offer subscription-based analytics capabilities in the cloud with Analytics as a Service (AaaS), and increasingly customers are turning to AaaS for business insights. A multi-tenant storage strategy allows the service providers to build a cost-effective architecture to meet increasing demand. Multi-tenancy means a single instance of software and its supporting infrastructure is […]

In the third scenario, we set up a connection where we connect to Oracle 18 and MySQL 8 using external drivers from AWS Glue ETL, extract the data, transform it, and load the transformed data to Oracle 18.

Building AWS Glue Spark ETL jobs by bringing your own JDBC drivers for Amazon RDS

AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it easy to prepare and load your data for analytics. AWS Glue has native connectors to connect to supported data sources either on AWS or elsewhere using JDBC drivers. Additionally, AWS Glue now enables you to bring your own JDBC drivers […]

For Configure route tables, select the route table ID of the associated subnet of the database.

Building AWS Glue Spark ETL jobs using Amazon DocumentDB (with MongoDB compatibility) and MongoDB

AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it easy to prepare and load your data for analytics. AWS Glue has native connectors to connect to supported data sources on AWS or elsewhere using JDBC drivers. Additionally, AWS Glue now supports reading and writing to Amazon DocumentDB (with MongoDB […]