AWS Big Data Blog

Category: Amazon Redshift

Using Amazon S3 Tables with Amazon Redshift to query Apache Iceberg tables

In this post, we demonstrate how to get started with S3 Tables and Amazon Redshift Serverless for querying data in Iceberg tables. We show how to set up S3 Tables, load data, register them in the unified data lake catalog, set up basic access controls in SageMaker Lakehouse through AWS Lake Formation, and query the data using Amazon Redshift.

Build a secure data visualization application using the Amazon Redshift Data API with AWS IAM Identity Center

In this post, we dive into the newly released feature of Amazon Redshift Data API support for SSO, Amazon Redshift RBAC for row-level security (RLS) and column-level security (CLS), and trusted identity propagation with AWS IAM Identity Center to let corporate identities connect to AWS services securely. We demonstrate how to integrate these services to create a data visualization application using Streamlit, providing secure, role-based access that simplifies user management while making sure that your organization can make data-driven decisions with enhanced security and ease.

Amazon Redshift announces history mode for zero-ETL integrations to simplify historical data tracking and analysis

This post will explore brief history of zero-ETL, its importance for customers, and introduce an exciting new feature: history mode for Amazon Aurora PostgreSQL-Compatible Edition, Amazon Aurora MySQL-Compatible Edition, Amazon Relational Database Service (Amazon RDS) for MySQL, and Amazon DynamoDB zero-ETL integration with Amazon Redshift.

Ingestion

Amazon Redshift Serverless adds higher base capacity of up to 1024 RPUs

In this post, we explore the new higher base capacity of 1024 RPUs in Redshift Serverless, which doubles the previous maximum of 512 RPUs. This enhancement empowers you to get high performance for your workload containing highly complex queries and write-intensive workloads, with concurrent data ingestion and transformation tasks that require high throughput and low latency with Redshift Serverless.

How Open Universities Australia modernized their data platform and significantly reduced their ETL costs with AWS Cloud Development Kit and AWS Step Functions

At Open Universities Australia (OUA), we empower students to explore a vast array of degrees from renowned Australian universities, all delivered through online learning. In this post, we show you how we used AWS services to replace our existing third-party ETL tool, improving the team’s productivity and producing a significant reduction in our ETL operational costs.

How MuleSoft achieved cloud excellence through an event-driven Amazon Redshift lakehouse architecture

In our previous thought leadership blog post Why a Cloud Operating Model we defined a COE Framework and showed why MuleSoft implemented it and the benefits they received from it. In this post, we’ll dive into the technical implementation describing how MuleSoft used Amazon EventBridge, Amazon Redshift, Amazon Redshift Spectrum, Amazon S3, & AWS Glue to implement it.

How EUROGATE established a data mesh architecture using Amazon DataZone

In this post, we show you how EUROGATE uses AWS services, including Amazon DataZone, to make data discoverable by data consumers across different business units so that they can innovate faster. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

Ingest data from Google Analytics 4 and Google Sheets to Amazon Redshift using Amazon AppFlow

Amazon AppFlow bridges the gap between Google applications and Amazon Redshift, empowering organizations to unlock deeper insights and drive data-informed decisions. In this post, we show you how to establish the data ingestion pipeline between Google Analytics 4, Google Sheets, and an Amazon Redshift Serverless workgroup.

Recap of Amazon Redshift key product announcements in 2024

Amazon Redshift made significant strides in 2024, that enhanced price-performance, enabled data lakehouse architectures by blurring the boundaries between data lakes and data warehouses, simplified ingestion and accelerated near real-time analytics, and incorporated generative AI capabilities to build natural language-based applications and boost user productivity. This blog post provides a comprehensive overview of the major product innovations and enhancements made to Amazon Redshift in 2024.